Содержание
Ядро
Является непременным компонентом почти для каждой клетки эукариот (за исключением эритроцитов, тромбоцитов млекопитающих, ситовидных трубок растений). Клетки, как правило, имеют одно ядро, но встречаются двухядерные (инфузории) и многоядерные (гепатоциты, мышечные клетки и т. п.). Каждый тип клетки имеет определенное постоянное соотношение между объемами ядра и цитоплазмы – ядерно-цитоплазматическое соотношение.
Форма ядра
Ядра бывают разной формы и размеров. Обычная форма ядра – шарообразная, реже – другая (звездчатая, неправильная и т. п.). Размеры колеблются от 1 мкм до 1 см.
Некоторые одноклеточные (инфузории и т. п.) имеют два ядра: вегетативное и генеративное. Генеративное обеспечивает передачу генетической информации, вегетативное – регулирует синтез белков.
Покрыто двумя мембранами (внешней и внутренней) с ядерными порами, прикрытыми особыми тельцами; внутри – ядерный матрикс, состоящий из ядерного сока (кариоплазмы, нуклеоплазмы), ядрышек (одного или нескольких), рибонуклеопротеидных комплексов и нитей хроматина. Между двумя мембранами есть щель (от 20 до 60 нм). Внешняя мембрана ядра связана с ЭПС.
Внутреннее содержимое ядра
Кариоплазма (от греч. карион – ядро ореха) – это внутреннее содержимое ядра. По строению напоминает цитоплазму. Содержит белковые фибриллы, образующие внутренний скелет ядра.
Ядрышко состоит из комплекса РНК с белками (рибонуклеопротеидных фибрилл), внутреннеядрышкового хроматина и из предшественников субъединиц рибосом (гранул). Образуются на вторичных перетяжках хромосом – ядрышковых организаторах.
Функция ядрышек
Функция ядрышек: синтез рибосом.
Нити хроматина – хромосомы в период между делениями клетки (дезоксирибонуклеиновые комплексы). Имеют вид одиночных нитей (эухроматин), гранул (гетерохроматин) и интенсивно окрашиваются некоторыми красителями.
Хромосомы – ядерные структуры, в которых находятся гены, состоят из ДНК и белка. Кроме того, в состав хромосом входят ферменты и РНК.
Функции ядра
Сохранение и передача генетической информации, организация и регуляция процессов обмена веществ, физиологических и морфологических в клетке (например, синтез белка).
Хромосомы
Хромосомы (от греч. хрома – цвет, сома – тело). Были открыты с помощью светового микроскопа в конце XIX века. Их строение лучше всего изучать на стадии метафазы митоза, когда они максимально спирализованы. Для этого располагают хромосомы по размерам (первые – наиболее длинные, последние – половые), составляют идеограммы.
Химический состав хромосом
В химический состав хромосом входят двухцепочечная ДНК, связанная с ядерными белками (образует нуклеопротеиды), РНК и ферменты. Ядерные белки, обернутые нитью ДНК, образуют нуклеосомы. По 8-10 нуклеосом соединяются в глобулы. Между ними содержатся участки ДНК. Таким образом компактно размещены в хромосоме молекулы ДНК. В развернутом виде молекулы ДНК очень длинные.
Состоят хромосомы из двух хроматид, соединенных первичной перетяжкой, которая разделяет их на плечи. Хромосомы могут быть равноплечими, разноплечими, одноплечими. В участке первичной перетяжки содержится пластинчатое образование в виде диска – центромера, к которому во время деления прикрепляются нити веретена деления. Могут иметь вторичную перетяжку (ядрышковый организатор) и спутник.
Каждая хромосома в наборе имеет себе подобную по строению и набору генов – гомологичную. Хромосомы разных пар будут по отношению одна к другой негомологичными. Хромосомы, которые не определяют пола, называются аутосомами. Хромосомы, определяющие пол, называются гетерохромосомами.
Какие бывают клетки
Клетки бывают неполовые – соматические (от греч. сома – тело) и половые, или генеративные (от лат. genero – порождаю, вырабатываю) гаметы. Количество хромосом в ядре может быть разным у разных видов организмов. Во всех соматических клетках организмов одного вида количество хромосом обычно одинаково. Для соматических характерен двойной набор хромосом – диплоидный (2n), для гамет – гаплоидный (n). Число хромосом может превышать двойной набор. Такой набор называется полиплоидным (триплоидный (Зn), тетраплоидный (4n) и т. п.).
Кариотип – это определенный набор хромосом в клетке, характерный для каждого вида растений, животных, грибов. Количество хромосом в кариотипе всегда четное. Количество хромосом не зависит от уровня организации организма, не всегда свидетельствует о филогенетическом родстве (у человека– 46 хромосом, у собаки – 78, у таракана – 48, у шимпанзе – 48).
Митохондрии
Митохондрии (от греч. митос – нить, хондрион – зернышко) – двухмембранные органеллы, которые имеют бобообразную форму палочек, нитей, есть почти во всех клетках эукариот. Иногда могут разветвляться (у некоторых одноклеточных, мышечных волокон и т. п.). Количество разное (от 1 до 100 тыс. и более). В клетках растений – меньше, поскольку их функцию (образование АТФ) частично выполняют хлоропласты.
Строение Митохондрии
Внешняя мембрана – гладкая, внутренняя – складчатая. Складки увеличивают внутреннюю поверхность, они называются кристами. Между внешней и внутренней мембранами есть щель (10-20 нм шириной). На поверхности внутренней мембраны расположен комплекс ферментов.
Внутренняя среда – матрикс. В нем находятся кольцевая молекула ДНК, рибосомы, иРНК, включения, синтезируются белки, входящие в состав внутренней мембраны.
Митохондрии в клетке постоянно восстанавливаются. Являются полуавтономными структурами – образуются путем деления.
Функции Митохондрии
Функции: энергетические «станции» клетки – образуют энергетически богатые вещества – АТФ, обеспечивают клеточное дыхание.
Пластиды
Пластиды (от греч. пластидис, пластос – сформированный, вылепленный) – двухмембранные органеллы фотосинтезирующих организмов (преимущественно растений). Имеют разную форму, окраску. Различают три вида:
- Хлоропласты (от греч. хлорос – зеленый) – содержат в мембранах в основном хлорофилл, определяют зеленый цвет растений, находятся в зеленых частях растений. Длиной 5-10 мкм. Количество колеблется.
Строение хлоропластов
Строение: внешняя мембрана гладкая, внутренняя – складчатая, внутреннее содержимое – матрикс с кольцевой молекулой ДНК, рибосомами и включениями. Между внешней и внутренней мембранами – щель (20-30 нм). Внутренние мембраны образуют стопки – граны, которые состоят из тилакоидов (по 50 и больше), которые имеют вид уплощенных вакуолей или мешочков. Гран в хлоропласте 60 и более. Граны соединены ламеллами – плоскими удлиненными складками мембраны. На внутренних мембранах находятся фотосинтезирующие пигменты (хлорофилл и др.). Внутри хлоропласта – матрикс. В нем содержатся кольцевая молекула ДНК, рибосомы, включения, зерна крахмала.
Основные фотосинтезирующие пигменты (хлорофиллы, вспомогательные – каротиноиды) находятся в тилакоидах.
Основная функция хлоропластов
Основная функция – фотосинтез. В хлоропластах синтезируются также некоторые липиды, белки мембран.
Хлоропласты – полуавтономные структуры, располагают собственной генетической информацией, имеют собственный белоксинтезирующий аппарат, размножаются делением.
- Хромопласты (от греч. хрома – краска, цвет) – содержат цветные пигменты (каротины, ксантофиллы и др.), имеют немногочисленные тилакоиды, почти отсутствующую внутреннюю мембранную систему, находятся в цветных частях растения. Функции привлекают насекомых, других животных для опыления, рас-пространения плодов и семян.
- Лейкопласты (от греч. лейкос – белый) – это бесцветные пластиды, находятся в неокрашенных частях растения. Функция: запасают питательные вещества, продукты метаболизма клетки. Содержат кольцевую ДНК, рибосомы, включения, ферменты. Могут быть почти полностью заполнены зернами крахмала.
Пластиды имеют общее происхождение, возникают из пропластид образовательной ткани. Разные виды пластид могут переходить одна в другую. Светлые пропластиды превращаются в хлоропласты, лейкопласты –в хлоропласты или хромопласты. Разрушение хлорофилла в пластидах приводит к образованию хромопластов (осенью зеленая листва становится желтой, красной). Хромопласты – конечное преобразование пластид. Больше они ни в какие другие не превращаются.
У водорослей и некоторых жгутиковых есть особая двухмембранная органелла, которая содержит фотосинтезирующие пигменты – хроматофор. Она сходна по строению с хлоропластами, но имеет определенные отличия. В хроматофорах нет гран. Форма – разнообразная (у хламидомонады – чашевидная, у спирогиры – в виде спиральных лент и т. п.). В состав хроматофора входит пиреноид – участок клетки с мелкими вакуолями и зернами крахмала.
Гипотеза симбиогенеза (эндосимбиоза)
Клетки прокариот вступили в симбиоз с эукариотическими клетками. Считается, что митохондрии образовались в результате сожительства клеток аэробных и анаэробных, хлоропласты – в результате сожительства цианобактерий с клетками гетеротрофных первоначальных эукариот. Об этом свидетельствует то, что пластиды и митохондрии по размерам приближены к клеткам прокариот, имеют собственную кольцевую молекулу ДНК и собственный белоксинтезирующий аппарат. Они являются полуавтономными, образуются путем деления.